Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.292
Filtrar
1.
BMC Genomics ; 25(1): 323, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561663

RESUMO

BACKGROUND: Cow milk fat is an essential indicator for evaluating and measuring milk quality and cow performance. Growing research has identified the molecular functions of circular RNAs (circRNAs) necessary for mammary gland development and lactation in mammals. METHOD: The present study analyzed circRNA expression profiling data in mammary epithelial cells (MECs) from cows with highly variable milk fat percentage (MFP) using differential expression analysis and weighted gene co-expression network analysis (WGCNA). RESULTS: A total of 309 differentially expressed circRNAs (DE-circRNAs) were identified in the high and low MFP groups. WGCNA analysis revealed that the pink module was significantly associated with MFP (r = - 0.85, P = 0.007). Parental genes of circRNAs in this module were enriched mainly in lipid metabolism-related signaling pathways, such as focal adhesion, ECM-receptor interaction, adherens junction and AMPK. Finally, six DE-circRNAs were screened from the pink module: circ_0010571, circ_0007797, circ_0002746, circ_0003052, circ_0004319, and circ_0012840. Among them, circ_0002746, circ_0003052, circ_0004319, and circ_0012840 had circular structures and were highly expressed in mammary tissues. Subcellular localization revealed that these four DE-circRNAs may play a regulatory role in the mammary glands of dairy cows, mainly as competitive endogenous RNAs (ceRNAs). Seven hub target genes (GNB1, GNG2, PLCB1, PLCG1, ATP6V0C, NDUFS4, and PIGH) were obtained by constructing the regulatory network of their ceRNAs and then analyzed by CytoHubba and MCODE plugins in Cytoscape. Functional enrichment analysis revealed that these genes are crucial and most probable ceRNA regulators in milk fat metabolism. CONCLUSIONS: Our study identified several vital circRNAs and ceRNAs affecting milk fat synthesis, providing new research ideas and a theoretical basis for cow lactation, milk quality, and breed improvement.


Assuntos
MicroRNAs , RNA Circular , Feminino , Bovinos , Animais , RNA Circular/genética , RNA Circular/metabolismo , Leite/metabolismo , 60414 , Lactação/genética , Metabolismo dos Lipídeos/genética , Redes Reguladoras de Genes , MicroRNAs/genética , Mamíferos/genética
2.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612676

RESUMO

For much of human evolution, the average lifespan was <40 years, due in part to disease, infant mortality, predators, food insecurity, and, for females, complications of childbirth. Thus, for much of evolution, many females did not reach the age of menopause (45-50 years of age) and it is mainly in the past several hundred years that the lifespan has been extended to >75 years, primarily due to public health advances, medical interventions, antibiotics, and nutrition. Therefore, the underlying biological mechanisms responsible for disease risk following menopause must have evolved during the complex processes leading to Homo sapiens to serve functions in the pre-menopausal state. Furthermore, as a primary function for the survival of the species is effective reproduction, it is likely that most of the advantages of having such post-menopausal risks relate to reproduction and the ability to address environmental stresses. This opinion/perspective will be discussed in the context of how such post-menopausal risks could enhance reproduction, with improved survival of offspring, and perhaps why such risks are preserved. Not all post-menopausal females exhibit risk for this set of diseases, and those who do develop such diseases do not have all of the conditions. The diseases of the post-menopausal state do not operate as a unified complex, but as independent variables, with the potential for some overlap. The how and why there would be such heterogeneity if the risk factors serve essential functions during the reproductive years is also discussed and the concept of sets of reversible epigenetic changes associated with puberty, pregnancy, and lactation is offered to explain the observations regarding the distribution of post-menopausal conditions and their potential roles in reproduction. While the involvement of an epigenetic system with a dynamic "modification-demodification-remodification" paradigm contributing to disease risk is a hypothesis at this point, validation of it could lead to a better understanding of post-menopausal disease risk in the context of reproduction with commonalities may also lead to future improved interventions to control such risk after menopause.


Assuntos
Menopausa , Pós-Menopausa , Lactente , Gravidez , Feminino , Humanos , Pessoa de Meia-Idade , Menopausa/genética , Ciclo Menstrual , Lactação/genética , Puberdade , Epigênese Genética
3.
Nat Commun ; 15(1): 3288, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627401

RESUMO

Lactation insufficiency affects many women worldwide. During lactation, a large portion of mammary gland alveolar cells become polyploid, but how these cells balance the hyperproliferation occurring during normal alveologenesis with terminal differentiation required for lactation is unknown. Here, we show that DNA damage accumulates due to replication stress during pregnancy, activating the DNA damage response. Modulation of DNA damage levels in vivo by intraductal injections of nucleosides or DNA damaging agents reveals that the degree of DNA damage accumulated during pregnancy governs endoreplication and milk production. We identify a mechanism involving early mitotic arrest through CDK1 inactivation, resulting in a heterogeneous alveolar population with regards to ploidy and nuclei number. The inactivation of CDK1 is mediated by the DNA damage response kinase WEE1 with homozygous loss of Wee1 resulting in decreased endoreplication, alveologenesis and milk production. Thus, we propose that the DNA damage response to replication stress couples proliferation and endoreplication during mammary gland alveologenesis. Our study sheds light on mechanisms governing lactogenesis and identifies non-hormonal means for increasing milk production.


Assuntos
Células Epiteliais Alveolares , Glândulas Mamárias Humanas , Gravidez , Animais , Feminino , Humanos , Endorreduplicação , Glândulas Mamárias Animais , Lactação/genética , Leite
4.
Genet Sel Evol ; 56(1): 27, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589805

RESUMO

BACKGROUND: Claw diseases and mastitis represent the most important health issues in dairy cattle with a frequently mentioned connection to milk production. Although many studies have aimed at investigating this connection in more detail by estimating genetic correlations, they do not provide information about causality. An alternative is to carry out Mendelian randomization (MR) studies using genetic variants to investigate the effect of an exposure on an outcome trait mediated by genetic variants. No study has yet investigated the causal association of milk yield (MY) with health traits in dairy cattle. Hence, we performed a MR analysis of MY and seven health traits using imputed whole-genome sequence data from 34,497 German Holstein cows. We applied a method that uses summary statistics and removes horizontal pleiotropic variants (having an effect on both traits), which improves the power and unbiasedness of MR studies. In addition, genetic correlations between MY and each health trait were estimated to compare them with the estimates of causal effects that we expected. RESULTS: All genetic correlations between MY and each health trait were negative, ranging from - 0.303 (mastitis) to - 0.019 (digital dermatitis), which indicates a reduced health status as MY increases. The only non-significant correlation was between MY and digital dermatitis. In addition, each causal association was negative, ranging from - 0.131 (mastitis) to - 0.034 (laminitis), but the number of significant associations was reduced to five nominal and two experiment-wide significant results. The latter were between MY and mastitis and between MY and digital phlegmon. Horizontal pleiotropic variants were identified for mastitis, digital dermatitis and digital phlegmon. They were located within or nearby variants that were previously reported to have a horizontal pleiotropic effect, e.g., on milk production and somatic cell count. CONCLUSIONS: Our results confirm the known negative genetic connection between health traits and MY in dairy cattle. In addition, they provide new information about causality, which for example points to the negative energy balance mediating the connection between these traits. This knowledge helps to better understand whether the negative genetic correlation is based on pleiotropy, linkage between causal variants for both trait complexes, or indeed on a causal association.


Assuntos
Dermatite Digital , Mastite , Animais , Bovinos/genética , Feminino , Celulite (Flegmão) , Lactação/genética , Análise da Randomização Mendeliana , Leite
5.
Trop Anim Health Prod ; 56(3): 109, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509383

RESUMO

One of the limitations of implementing animal breeding programs in small-scale or extensive production systems is the lack of production records and genealogical records. In this context, molecular markers could help to gain information for the breeding program. This study addresses the inclusion of molecular data into traditional genetic evaluation models as a random effect by molecular pedigree reconstruction and as a fixed effect by Bayesian clustering. The methods were tested for lactation curve traits in 14 dairy goat herds with incomplete phenotypic data and pedigree information. The results showed an increment of 37.3% of the relationships regarding the originals with MOLCOAN and clustering into five genetic groups. Data leads to estimating additive variance, error variance, and heritability with four different models, including pedigree and molecular information. Deviance Information Criterion (DIC) values demonstrate a greater fitting of the models that include molecular information either as fixed (genetic clusters) or as random (molecular matrix) effects. The molecular information of simple markers can complement genetic improvement strategies in populations with little information.


Assuntos
Cabras , Lactação , Feminino , Animais , Linhagem , Teorema de Bayes , Lactação/genética , Fenótipo , Cabras/genética , Modelos Genéticos , Leite
6.
BMC Genomics ; 25(1): 265, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461236

RESUMO

BACKGROUND: Over the last decades, it was subject of many studies to investigate the genomic connection of milk production and health traits in dairy cattle. Thereby, incorporating functional information in genomic analyses has been shown to improve the understanding of biological and molecular mechanisms shaping complex traits and the accuracies of genomic prediction, especially in small populations and across-breed settings. Still, little is known about the contribution of different functional and evolutionary genome partitioning subsets to milk production and dairy health. Thus, we performed a uni- and a bivariate analysis of milk yield (MY) and eight health traits using a set of ~34,497 German Holstein cows with 50K chip genotypes and ~17 million imputed sequence variants divided into 27 subsets depending on their functional and evolutionary annotation. In the bivariate analysis, eight trait-combinations were observed that contrasted MY with each health trait. Two genomic relationship matrices (GRM) were included, one consisting of the 50K chip variants and one consisting of each set of subset variants, to obtain subset heritabilities and genetic correlations. In addition, 50K chip heritabilities and genetic correlations were estimated applying merely the 50K GRM. RESULTS: In general, 50K chip heritabilities were larger than the subset heritabilities. The largest heritabilities were found for MY, which was 0.4358 for the 50K and 0.2757 for the subset heritabilities. Whereas all 50K genetic correlations were negative, subset genetic correlations were both, positive and negative (ranging from -0.9324 between MY and mastitis to 0.6662 between MY and digital dermatitis). The subsets containing variants which were annotated as noncoding related, splice sites, untranslated regions, metabolic quantitative trait loci, and young variants ranked highest in terms of their contribution to the traits` genetic variance. We were able to show that linkage disequilibrium between subset variants and adjacent variants did not cause these subsets` high effect. CONCLUSION: Our results confirm the connection of milk production and health traits in dairy cattle via the animals` metabolic state. In addition, they highlight the potential of including functional information in genomic analyses, which helps to dissect the extent and direction of the observed traits` connection in more detail.


Assuntos
Leite , Polimorfismo de Nucleotídeo Único , Animais , Feminino , Bovinos/genética , Fenótipo , Genótipo , Genômica/métodos , Locos de Características Quantitativas , Lactação/genética
7.
Genet Sel Evol ; 56(1): 22, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549172

RESUMO

BACKGROUND: Bovine lactoferrin (Lf) is an iron absorbing whey protein with antibacterial, antiviral, and antifungal activity. Lactoferrin is economically valuable and has an extremely variable concentration in milk, partly driven by environmental influences such as milking frequency, involution, or mastitis. A significant genetic influence has also been previously observed to regulate lactoferrin content in milk. Here, we conducted genetic mapping of lactoferrin protein concentration in conjunction with RNA-seq, ChIP-seq, and ATAC-seq data to pinpoint candidate causative variants that regulate lactoferrin concentrations in milk. RESULTS: We identified a highly-significant lactoferrin protein quantitative trait locus (pQTL), as well as a cis lactotransferrin (LTF) expression QTL (cis-eQTL) mapping to the LTF locus. Using ChIP-seq and ATAC-seq datasets representing lactating mammary tissue samples, we also report a number of regions where the openness of chromatin is under genetic influence. Several of these also show highly significant QTL with genetic signatures similar to those highlighted through pQTL and eQTL analysis. By performing correlation analysis between these QTL, we revealed an ATAC-seq peak in the putative promotor region of LTF, that highlights a set of 115 high-frequency variants that are potentially responsible for these effects. One of the 115 variants (rs110000337), which maps within the ATAC-seq peak, was predicted to alter binding sites of transcription factors known to be involved in lactation-related pathways. CONCLUSIONS: Here, we report a regulatory haplotype of 115 variants with conspicuously large impacts on milk lactoferrin concentration. These findings could enable the selection of animals for high-producing specialist herds.


Assuntos
Lactação , Lactoferrina , Leite , Animais , Feminino , Haplótipos , Lactação/genética , Lactoferrina/genética , Lactoferrina/análise , Lactoferrina/metabolismo , Leite/química , Leite/metabolismo , Bovinos
8.
Genes (Basel) ; 15(3)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38540408

RESUMO

The production of milk by dairy cows far exceeds the nutritional needs of the calf and is vital for the economical use of dairy cattle. High milk yield is a unique production trait that can be effectively enhanced through traditional selection methods. The process of lactation in cows serves as an excellent model for studying the biological aspects of lactation with the aim of exploring the mechanistic base of this complex trait at the cellular level. In this study, we analyzed the milk transcriptome at the single-cell level by conducting scRNA-seq analysis on milk samples from two Holstein Friesian cows at mid-lactation (75 and 93 days) using the 10× Chromium platform. Cells were pelleted and fat was removed from milk by centrifugation. The cell suspension from each cow was loaded on separate channels, resulting in the recovery of 9313 and 14,544 cells. Library samples were loaded onto two lanes of the NovaSeq 6000 (Illumina) instrument. After filtering at the cell and gene levels, a total of 7988 and 13,973 cells remained, respectively. We were able to reconstruct different cell types (milk-producing cells, progenitor cells, macrophages, monocytes, dendritic cells, T cells, B cells, mast cells, and neutrophils) in bovine milk. Our findings provide a valuable resource for identifying regulatory elements associated with various functions of the mammary gland such as lactation, tissue renewal, native immunity, protein and fat synthesis, and hormonal response.


Assuntos
Leite , Transcriptoma , Feminino , Animais , Bovinos , Leite/metabolismo , Transcriptoma/genética , Lactação/genética , Proteínas/genética , Fenótipo
9.
Genet Sel Evol ; 56(1): 23, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553689

RESUMO

BACKGROUND: In the current context of climate change, livestock production faces many challenges to improve the sustainability of systems. Dairy farming, in particular, must find ways to select animals that will be able to achieve sufficient overall production while maintaining their reproductive ability in environments with increasing temperatures. With future forecasted climate conditions in mind, this study used data from Holstein and Montbeliarde dairy cattle to: (1) estimate the genetic-by-temperature-humidity index (THI) interactions for female fertility, and (2) evaluate the production-fertility trade-off with increasing values of THI. RESULTS: Two-trait random regression models were fitted for conception rate (fertility) and test-day protein yield (production). For fertility, genetic correlations between different THI values were generally above 0.75, suggesting weak genotype-by-THI interactions for conception rate in both breeds. However, the genetic correlations between the conception rate breeding values at the current average THI (THI = 50, corresponding to a 24-h average temperature of 8 °C at 50% relative humidity) and their slopes (i.e., potential reranking) for heat stress scenarios (THI > 70), were different for each breed. For Montbeliarde, this correlation tended to be positive (i.e., overall the best reproducers are less affected by heat stress), whereas for Holstein it was approximately zero. Finally, our results indicated a weak antagonism between production and fertility, although for Montbeliarde this antagonism intensified with increasing THI. CONCLUSIONS: Within the range of weather conditions studied, increasing temperatures are not expected to exacerbate the fertility-production trade-off. However, our results indicated that the animals with the best breeding values for production today will be the most affected by temperature increases, both in terms of fertility and production. Nonetheless, these animals should remain among the most productive ones during heat waves. For Montbeliarde, the current selection program for fertility seems to be adequate for ensuring the adaptation of fertility traits to temperature increases, without adverse effects on production. Such a conclusion cannot be drawn for Holstein. In the future, the incorporation of a heat tolerance index into dairy cattle breeding programs would be valuable to promote the selection of animals adapted to future climate conditions.


Assuntos
Transtornos de Estresse por Calor , Leite , Animais , Bovinos/genética , Feminino , Umidade , Temperatura , Leite/metabolismo , Lactação/genética , Temperatura Alta , Fertilidade/genética , Transtornos de Estresse por Calor/veterinária
10.
Anim Biotechnol ; 35(1): 2319622, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38437001

RESUMO

The objective of the present study was to identify genomic regions influencing economic traits in Murrah buffaloes using weighted single step Genome Wide Association Analysis (WssGWAS). Data on 2000 animals, out of which 120 were genotyped using a double digest Restriction site Associated DNA (ddRAD) sequencing approach. The phenotypic data were collected from NDRI, India, on growth traits, viz., body weight at 6M (month), 12M, 18M and 24M, production traits like 305D (day) milk yield, lactation length (LL) and dry period (DP) and reproduction traits like age at first calving (AFC), calving interval (CI) and first service period (FSP). The biallelic genotypic data consisted of 49353 markers post-quality check. The heritability estimates were moderate to high, low to moderate, low for growth, production, reproduction traits, respectively. Important genomic regions explaining more than 0.5% of the total additive genetic variance explained by 30 adjacent SNPs were selected for further analysis of candidate genes. In this study, 105 genomic regions were associated with growth, 35 genomic regions with production and 42 window regions with reproduction traits. Different candidate genes were identified in these genomic regions, of which important are OSBPL8, NAP1L1 for growth, CNTNAP2 for production and ILDR2, TADA1 and POGK for reproduction traits.


Assuntos
Búfalos , Estudo de Associação Genômica Ampla , Feminino , Animais , Búfalos/genética , Lactação/genética , Genoma/genética , Leite , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
11.
Anim Biotechnol ; 35(1): 2331642, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520296

RESUMO

Our study aimed to explore the genetic variation in the Toll-like receptor 4 (TLR4) gene and establish its association with somatic cell score (SCS) and milk production traits in four Indian camel breeds namely Bikaneri, Kachchhi, Jaisalmeri and Mewari. TLR4 gene fragment of 573 bp spanning 5' UTR, exon-1 and partial intron-1 region was amplified and genotyped using the PCR-sequence based typing method. Only one SNP located at position C472T was identified. Genotyping revealed two alleles (C and T) and three genotypes: CC, CT and TT. The genotype frequencies for CC, CT and TT were 0.116, 0.326 and 0.558 and allele frequencies for C and T alleles were 0.279 and 0.721, respectively. Association study inferred that the effect of genotype on SCS, lactation yield (LY) and peak yield (PY) was non-significant however heterozygote (CT) genotypes recorded lower SCS and higher LY and PY. It can be concluded that the TLR4 gene possesses limited genetic variation, depicting polymorphism at a single locus in Indian camel breeds with a predominance of the TT genotype. The association study indicated that heterozygote animals possess better udder health and production performance, the statistical significance of which needs to be established using a large data set.


Assuntos
Camelus , Receptor 4 Toll-Like , Feminino , Animais , Camelus/genética , Receptor 4 Toll-Like/genética , Leite , Polimorfismo Genético , Frequência do Gene , Genótipo , Lactação/genética , Polimorfismo de Nucleotídeo Único/genética
12.
Animal ; 18(3): 101110, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442541

RESUMO

The environmental impact of dairy production can be reduced in several ways, including increasing feed efficiency and reducing methane (CH4) emissions. There is no consensus on their relationship. This study aimed at estimating the correlations between residual feed intake (RFI) and CH4 emissions expressed in g/d methane production (MeP), g/kg of fat- and protein-corrected milk methane intensity (MeI), or g/kg of DM intake methane yield (MeY) throughout lactation. We collected CH4 data using GreenFeed devices from 107 Holstein cows, as well as production and intake phenotypes. RFI was predicted from DM intake, fat- and protein-corrected milk, BW, and body condition score. Five-trait random regression models were used to estimate the individual variance components of the CH4 and production traits, which were used to calculate the correlations between RFI and CH4 traits throughout lactation. We found positive correlations of RFI with MeP and MeI ranging from 0.05 to 0.47 throughout the lactation. Correlations between RFI and MeY are low and vary from positive to negative, ranging from -0.18 to 0.17. Both MeP and MeI are favorably correlated with RFI, as is MeY during the first half of lactation. These correlations are mostly favorable for genetic selection, but the confirmation of these results is needed with genetic correlations over a larger dataset.


Assuntos
Ração Animal , Lactação , Feminino , Bovinos/genética , Animais , Ração Animal/análise , Lactação/genética , Leite , Ingestão de Alimentos , Metano , Dieta/veterinária
13.
Anim Biotechnol ; 35(1): 2307012, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38305036

RESUMO

This study investigated the association of selected growth hormone receptor (GHR) gene SNPs with selected fertility and milk production-related phenotypes of cross-bred dairy cows (n = 153) reared on three National Livestock Development Board farms in Sri Lanka. Selected cows were genetically screened for SNPs in the exon 08 (n = 153) and 5' upstream (n = 118) regions of the GHR gene using the target sequencing method. The relationships between different genotypes and fertility traits (average calving interval, average number of services per conception, and age at first calving) and milk production-related traits (average total lactation yield, average lactation length, and average milk yield) were analyzed using the General Linear Model in SPSS. Among the identified Four GHR SNPs, rs1099014416 was significantly associated with average calving interval and age at first calving. Cows with GG genotype exhibited younger age at first calving (918.51 ± 113.42 days) and longer calving intervals (543.41 ± 43.29 days) compared to cows with GT (1275.18 ± 38.31, 515.09 ± 24.49 days) and TT (1212.89 ± 88.22, 364.52 ± 54.01 days) genotypes. Other SNPs did not show associations with the studied traits. SNP rs109014416 has the potential to be used as a genetic marker for fertility-related traits in the selection of cross-bred dairy cows in Sri Lanka which should be validated with a larger population.


Assuntos
Leite , Receptores da Somatotropina , Feminino , Bovinos/genética , Animais , Receptores da Somatotropina/genética , Prevalência , Sri Lanka , Fertilidade/genética , Lactação/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
14.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38354297

RESUMO

Improving the feeding efficiency of dairy cows is a key component to improve the utilization of land resources and meet the demand for high-quality protein. Advances in genomic methods and omics techniques have made it possible to breed more efficient dairy cows through genomic selection. The aim of this review is to obtain a comprehensive understanding of the biological background of feed efficiency (FE) complex traits in purebred Holstein dairy cows including heritability estimate, and genetic markers, genes, and pathways participating in FE regulation mechanism. Through a literature search, we systematically reviewed the heritability estimation, molecular genetic markers, genes, biomarkers, and pathways of traits related to feeding efficiency in Holstein dairy cows. A meta-analysis based on a random-effects model was performed to combine reported heritability estimates of FE complex. The heritability of residual feed intake, dry matter intake, and energy balance was 0.20, 0.34, and 0.22, respectively, which proved that it was reasonable to include the related traits in the selection breeding program. For molecular genetic markers, a total of 13 single-nucleotide polymorphisms and copy number variance loci, associated genes, and functions were reported to be significant across populations. A total of 169 reported candidate genes were summarized on a large scale, using a higher threshold (adjusted P value < 0.05). Then, the subsequent pathway enrichment of these genes was performed. The important genes reported in the articles were included in a gene list and the gene list was enriched by gene ontology (GO):biological process (BP), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis. Three GO:BP terms and four KEGG terms were statistically significant, which mainly focused on adenosine triphosphate (ATP) synthesis, electron transport chain, and OXPHOS pathway. Among these pathways, involved genes such as ATP5MC2, NDUFA, COX7A2, UQCR, and MMP are particularly important as they were previously reported. Twenty-nine reported biological mechanisms along with involved genes were explained mainly by four biological pathways (insulin-like growth factor axis, lipid metabolism, oxidative phosphorylation pathways, tryptophan metabolism). The information from this study will be useful for future studies of genomic selection breeding and genetic structures influencing animal FE. A better understanding of the underlying biological mechanisms would be beneficial, particularly as it might address genetic antagonism.


A thorough understanding of the genetic factors that influence the feed efficiency of dairy cows is a prerequisite for planning and implementing selective breeding programs. Therefore, a systematic review of reported heritability, genetic markers, and biological pathways affecting FE-related traits in Holstein dairy cows was conducted and followed by a meta-analysis. A total of 47 articles were refined after literature screening and were presented in this review. A meta-analysis based on a random-effects model was then performed to combine the heritability estimates from studies. The meta-analysis showed heritability estimates of residual feed intake, dry matter intake, and energy balance were 0.22, 0.34, and 0.24, respectively. The systematic review demonstrated that 169 significant candidate genes, 13 genetic markers, and 29 biological mechanisms were previously reported on FE in Holstein dairy cows. Involved candidate genes and biological mechanisms are presented mainly in four biological mechanisms (insulin-like growth factors axis, lipid metabolism, oxidative phosphorylation pathways, tryptophan metabolism). The meta-analysis of the reported candidate genes showed three statistically significant KEGG terms and four GO:BP terms, which mainly focused on ATP synthesis, electron transport chain, and OXPHOS pathway.


Assuntos
Genoma , Lactação , Feminino , Bovinos/genética , Animais , Lactação/genética , Marcadores Genéticos , Fenótipo , Ingestão de Alimentos/genética , Ração Animal , Leite/metabolismo
15.
Trop Anim Health Prod ; 56(2): 90, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413494

RESUMO

The aims of this study were to estimate the genetic parameters for fat-to-protein ratio (F:P) within the first 90 days of lactation and to examine their genetic associations with daily milk yield (MY), somatic cell score (SCS), and calving interval between the first and second calving (IFSC) and between the second and third calving (ISTC) during the first three lactations of Holstein cows. We utilized 200,626 production-related data officially recorded from 77,436 cows milked two or three times a day from 2012 to 2022, sourced from the Holstein Cattle Breeders Association of Paraná State, Brazil. The (co)variance components were estimated using animal models, adopting the restricted maximum likelihood (REML) method with single-trait analysis (for heritability and repeatability) and two-trait analysis (for genetic and phenotypic correlations), per lactation. Regardless of lactation number, heritability estimates were relatively low, ranging from 0.08 ± 0.005 to 0.10 ± 0.003 for F:P; 0.08 ± 0.01 to 0.18 ± 0.005 for MY; 0.04 ± 0.01 to 0.07 ± 0.004 for SCS; and 0.03 ± 0.01 for both IFSC and ISTC. Repeatability estimates within the same lactation were low for F:P (ranging from 0.17 ± 0.002 to 0.19 ± 0.03), high for MY (between 0.50 ± 0.003 and 0.53 ± 0.002), and moderate to high for SCS (between 0.39 ± 0.003 and 0.44 ± 0.004). Genetic correlations between F:P and MY ranged from -0.26 ± 0.03 to -0.15 ± 0.02; F:P and SCS, from -0.06 ± 0.03 to -0.03 ± 0.08; F:P and IFSC, 0.31 ± 0.01; F:P and ISTC, 0.20 ± 0.01; MY and IFSC, 0.24 ± 0.05; and MY and ISTC, 0.13 ± 0.08. The fat-to-protein ratio during early lactation showed low genetic variability, regardless of lactation number. Furthermore, it was genetically correlated with MY, IFSC, and ISTC, although there is an antagonistic and unfavorable correlation between traits that can limit genetic progress.


Assuntos
Lactação , Leite , Feminino , Bovinos/genética , Animais , Brasil , Lactação/genética , Fenótipo
16.
Development ; 151(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38391249

RESUMO

Lactation is an essential process for mammals. In sheep, the R96C mutation in suppressor of cytokine signaling 2 (SOCS2) protein is associated with greater milk production and increased mastitis sensitivity. To shed light on the involvement of R96C mutation in mammary gland development and lactation, we developed a mouse model carrying this mutation (SOCS2KI/KI). Mammary glands from virgin adult SOCS2KI/KI mice presented a branching defect and less epithelial tissue, which were not compensated for in later stages of mammary development. Mammary epithelial cell (MEC) subpopulations were modified, with mutated mice having three times as many basal cells, accompanied by a decrease in luminal cells. The SOCS2KI/KI mammary gland remained functional; however, MECs contained more lipid droplets versus fat globules, and milk lipid composition was modified. Moreover, the gene expression dynamic from virgin to pregnancy state resulted in the identification of about 3000 differentially expressed genes specific to SOCS2KI/KI or control mice. Our results show that SOCS2 is important for mammary gland development and milk production. In the long term, this finding raises the possibility of ensuring adequate milk production without compromising animal health and welfare.


Assuntos
Lactação , Glândulas Mamárias Animais , Animais , Feminino , Camundongos , Gravidez , Células Epiteliais/metabolismo , Lactação/genética , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , Mutação/genética
17.
Animal ; 18(3): 101101, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38417215

RESUMO

Knowledge of the values of genetic parameters is a prerequisite for conducting a breeding program. This is especially important for rumination, which is considered an indicator of cow's health. Exploring the genetic relations between rumination time, milk yield, and milking traits could make it a valuable tool in dairy cattle breeding strategies. The objective of the research was to estimate heritability, repeatability, and genetic and phenotypic correlations of rumination time (RT), as well as traits associated with milk yield and milking of dairy cows of the Polish Holstein-Friesian breed kept in herds equipped with an automatic milking system. The research takes into consideration daily results for milking in the first lactation and second lactation, from 1 486 cows of the breed milked between 2013 and 2015 year. Cows were housed in 24 free-stall barns and fed a Partial Mixed Ration feed. The barns had an automated milking system (Astronaut A4 - Lely Industry). The cows received a varied dose of the concentrate, either in the milking robot or the feeding station, depending on the level of their milk yield. Our research has shown that RT was a low heritable trait (0.140 ± 0.039) and had a medium repeatability (0.572 ± 0.007). We detected a positive genetic correlation between RT and milk yield (0.341); however, a statistically significant negative relationship was identified between RT and urea content (-0.418) in milk. Estimations of genetic correlations suggest that selecting for higher RT may correspond to reduced urea content in milk. Investigating the genetics aspect of RT and the relationship with milk yield and milking traits may turn this into one of the useful criterion selections for dairy cattle breeding strategies, but should be used carefully. Further analyses on larger data sets and different populations are necessary.


Assuntos
Indústria de Laticínios , Leite , Feminino , Bovinos/genética , Animais , Indústria de Laticínios/métodos , Lactação/genética , Fenótipo , Ureia
18.
Gene ; 902: 148189, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246578

RESUMO

Kazakh mares have attracted widespread attention with their outstanding lactation traits. Lactation is a complex dynamic process regulated by multiple factors. The extensive application of transcriptome sequencing technology enables researchers to further explore this biological issue. This study selected three pregnant and three non-pregnant Kazakh mares as the research subject. Their mammary glands were taken for transcriptome sequencing. The results show that there are 9 lncRNAs and 122 mRNAs differentially expressed between the two groups. GO enrichment analysis shows that there are 175 molecular functions, 59 cellular components, and 555 biological processes, including cellular hormone metabolic process, hormone catabolic process, and I-kappaB kinase/NF-kappaB signaling. KEGG enrichment analysis exhibits that these differential genes are mainly enriched in the NF-kappa B signaling pathway, steroid hormone biosynthesis, breast cancer, ECM-receptor interaction, and MAPK signaling pathway. WNT4, DPP4, and NFKBIA are key nodes regulating breast activation. Conclusions: Through the comparative analysis of the transcriptome data of mammary tissues of pregnant and non-pregnant mares, relevant differentially expressed genes are screened and analyzed. This study provides valuable fundamental data for investigating candidate genes related to the lactation regulation and mammogenesis of Kazakh horses.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Gravidez , Animais , Feminino , Cavalos/genética , Perfilação da Expressão Gênica/métodos , Lactação/genética , RNA Mensageiro/genética , Hormônios
19.
Genes (Basel) ; 15(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38254981

RESUMO

Genetic selection has achieved little progress in reducing mastitis incidence. Mastitis traits are problematic due to the lack of sensitivity of the data and reliance on clinical diagnosis, often missing subclinical cases, and/or on monthly somatic cell count (SCC) measurements. The current measure for mastitis is the lactation average of the somatic cells score (LSCS). We studied two datasets: (1) 148 heifers divided into non-intramammary infected, sub-clinically infected and clinical mastitis groups; (2) data from 89,601 heifers from Israeli Holsteins through the same period divided into "udder healthy" (UH) and "non-healthy" (UNH) by a threshold of SCC 120,000 cells/mL in all nine monthly milk recordings. In study 1, non-infected heifers had significantly (p < 0.05) more partum, production days and overall lifetime milk production compared to clinical and sub-clinically infected. In study 2, UH heifers (20.3%) had significantly higher (p < 0.01) lifetime milk, production days, and lactations. Subdividing datasets by sires, the same analyses detected differences in percentages of UH daughters between the sire groups. Lifetime milk production correlated (r = +0.83, p < 0.001) with udder health status. SCC threshold of less than 120,000 cells/mL during all first lactation measurements indicated healthy udder, providing a valuable insight that this dichotomous trait is advantageous for calculating lifetime net-merit index (NM$) over LSCS.


Assuntos
Mastite , Animais , Bovinos , Feminino , Humanos , Mastite/diagnóstico , Mastite/genética , Mastite/veterinária , Lactação/genética , Leite , Contagem de Células , Nível de Saúde
20.
Trop Anim Health Prod ; 56(1): 31, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172456

RESUMO

The present study was aimed to evaluate the influence of non-genetic factors on several first lactation and lifetime performance traits and elucidate their genetic parameters in an organized Vrindavani cattle population. Data on eight first-lactation and thirteen lifetime traits were collected on 2400 cows with pedigree records that were reared during 33-year period (1989-2021). The first-lactation traits included age at first calving (AFC), total milk yield (FTMY), standard milk yield (FSMY305), peak yield (FPY), lactation length (FLL), dry period (FDP), service period (FSP) and calving interval (FCI). Whereas, the lifetime traits mainly included total lifetime milk yield (TLMY), total standard milk yield (TSMY), number of lactations completed (NL), total lactation length (TLL), herd life (HL), productive life (PL), average milk yield per day of herd life (TLMY/HL), average milk yield per day of productive life (TLMY/PL), average milk yield per day of productive life (TLMY/TLL). Other lifetime production traits included average service period (ASP), average dry period (ADP), average calving interval (ACI) and unproductive days (UD). The heritability estimates of first-lactation traits ranged between 0.026 and 0.228 and were found to be low for AFC (0.180 ± 0.042), FCI (0.191 ± 0.125), FSMY305 (0.145 ± 0.061), FTMY (0.165 ± 0.048), FDP (0.052 ± 0.049) and FSP (0.026 ± 0.033); however, FLL (0.229 ± 0.044) and FPY (0.202 ± 0.046) showed moderate heritability. Positive phenotypic correlation (p < 0.001) was revealed among FTMY, TLMY, TLL, HL and PL. The AFC produced a significant effect (p < 0.05) on several traits i,e, TLL, TLMY/HL, FSMY305, FPY, TLMY, HL and TLMY/PL. Lower AFC was associated with higher TLMY, TLL and TLMY/HL; while FSMY305, FPY, HL and TLMY/PL were higher in heifers that calved late in their life. The results revealed that AFC may be optimized with first lactation and lifetime traits for this population.


Assuntos
Lactação , Leite , Bovinos/genética , Animais , Feminino , Lactação/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...